Square function and non-tangential maximal function estimates for elliptic operators in 1-sided NTA domains satisfying the capacity density condition

Author:

Akman Murat1,Hofmann Steve2,Martell José María3ORCID,Toro Tatiana4

Affiliation:

1. Department of Mathematical Sciences , University of Essex , Colchester CO4 3SQ , United Kingdom

2. Department of Mathematics , University of Missouri , Columbia , MO 65211 , USA

3. Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM , Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid , Spain

4. Department of Mathematics , University of Washington , Box 354350 , Seattle , WA 98195-4350 , USA

Abstract

Abstract Let Ω n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (also known as uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider two real-valued (non-necessarily symmetric) uniformly elliptic operators L 0 u = - div ( A 0 u ) and L u = - div ( A u ) L_{0}u=-\operatorname{div}(A_{0}\nabla u)\quad\text{and}\quad Lu=-% \operatorname{div}(A\nabla u) in Ω, and write ω L 0 {\omega_{L_{0}}} and ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this article and its companion [M. Akman, S. Hofmann, J. M. Martell and T. Toro, Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition, preprint 2021, https://arxiv.org/abs/1901.08261v3] is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A {A_{\infty}} -condition or a RH q {\operatorname{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper, we are interested in obtaining a square function and non-tangential estimates for solutions of operators as before. We establish that bounded weak null-solutions satisfy Carleson measure estimates, with respect to the associated elliptic measure. We also show that for every weak null-solution, the associated square function can be controlled by the non-tangential maximal function in any Lebesgue space with respect to the associated elliptic measure. These results extend previous work of Dahlberg, Jerison and Kenig and are fundamental for the proof of the perturbation results in the paper cited above.

Funder

National Science Foundation

Agencia Estatal de Investigación

European Research Council

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3