Hörmander Fourier multiplier theorems with optimal Besov regularity on multi-parameter Hardy spaces

Author:

Chen Jiao1,Huang Liang2,Lu Guozhen3

Affiliation:

1. School of Mathematical Sciences , Chongqing Normal University , Chongqing 400000 , P. R. China

2. School of Science , Xi’an University of Posts and Telecommunications , Xi’an 710121 , P. R. China

3. Department of Mathematics , University of Connecticut , Storrs , CT 06269 , USA

Abstract

Abstract We will establish the boundedness of the Fourier multiplier operator T m f T_{m}f on multi-parameter Hardy spaces H p ( R n 1 × × R n r ) H^{p}(\mathbb{R}^{n_{1}}\times\cdots\times\mathbb{R}^{n_{r}}) ( 0 < p 1 0<p\leq 1 ) when the multiplier 𝑚 is of optimal smoothness in multi-parameter Besov spaces B 2 , q ( s 1 , , s r ) ( R n 1 × × R n r ) B^{{(s_{1},\ldots,s_{r})}}_{2,q}(\mathbb{R}^{n_{1}}\times\cdots\times\mathbb{R}^{n_{r}}) , where T m f ( x ) = R n 1 × × R n r m ( ξ ) f ^ ( ξ ) e 2 π i x ξ d ξ T_{m}f(x)=\int_{\mathbb{R}^{n_{1}}\times\cdots\times\mathbb{R}^{n_{r}}}m(\xi)\hat{f}(\xi)e^{2\pi ix\cdot\xi}\,d\xi for x R n 1 × × R n r x\in{\mathbb{R}^{n_{1}}\times\cdots\times\mathbb{R}^{n_{r}}} . We will show T m H p H p sup j 1 , , j r Z m j 1 , , j r B 2 , q ( s 1 , , s r ) , \lVert T_{m}\rVert_{H^{p}\to H^{p}}\lesssim\sup_{j_{1},\ldots,j_{r}\in\mathbb{Z}}\lVert m_{j_{1},\ldots,j_{r}}\rVert_{B^{{(s_{1},\ldots,s_{r})}}_{2,q}}, where 0 < q < 0<q<\infty and s i > n i ( 1 p - 1 2 ) s_{i}>n_{i}\bigl{(}\frac{1}{p}-\frac{1}{2}\bigr{)} . Here we have used the notation m j 1 , , j r ( ξ ) = m ( 2 j 1 ξ 1 , , 2 j r ξ r ) ψ ( 1 ) ( ξ 1 ) ψ ( r ) ( ξ r ) , m_{j_{1},\ldots,j_{r}}(\xi)=m(2^{j_{1}}\xi_{1},\ldots,2^{j_{r}}\xi_{r})\psi^{(1)}(\xi_{1})\cdots\psi^{(r)}(\xi_{r}), and ψ ( i ) ( ξ i ) \psi^{(i)}(\xi_{i}) is a suitable cut-off function on R n i \mathbb{R}^{n_{i}} for 1 i r 1\leq i\leq r . This multi-parameter Hörmander multiplier theorem is in the spirit of the earlier work of Baernstein and Sawyer in the one-parameter setting and sharpens our recent result of Hörmander multiplier theorem in the bi-parameter case which was established using R. Fefferman’s boundedness criterion. Because R. Fefferman’s boundedness criterion fails in the cases of three or more parameters, it is substantially more difficult to establish such Hörmander multiplier theorems in three or more parameters than in the bi-parameter case. To assume only the optimal smoothness on the multipliers, delicate and hard analysis on the sharp estimates of the square functions on arbitrary atoms are required. Our main theorems give the boundedness on the multi-parameter Hardy spaces under the smoothness assumption of the multipliers in multi-parameter Besov spaces and show the regularity conditions to be sharp.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3