Fefferman type criterion on weighted bi-parameter local Hardy spaces and boundedness of bi-parameter pseudodifferential operators

Author:

Ding Wei1,Lu Guozhen2

Affiliation:

1. School of Sciences , Nantong University , Nantong 226007 , P. R. China

2. Department of Mathematics , University of Connecticut , Storrs , CT 06269 , USA

Abstract

Abstract To study the boundedness of bi-parameter singular integral operators of non-convolution type in the Journé class, Fefferman discovered a boundedness criterion on bi-parameter Hardy spaces H p ( n 1 × n 2 ) {H^{p}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} by considering the action of the operators on rectangle atoms. More recently, the theory of multiparameter local Hardy spaces has been developed by the authors. In this paper, we establish this type of boundedness criterion on weighted bi-parameter local Hardy spaces h ω p ( n 1 × n 2 ) {h^{p}_{\omega}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} . In comparison with the unweighted case, the uniform boundedness of rectangle atoms on weighted local bi-parameter Hardy spaces, which is crucial to establish the atomic decomposition on bi-parameter weighted local Hardy spaces, is considerably more involved. As an application, we establish the boundedness of bi-parameter pseudodifferential operators, including h ω p ( n 1 × n 2 ) {h^{p}_{\omega}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} to L ω p ( n 1 + n 2 ) {L_{\omega}^{p}(\mathbb{R}^{n_{1}+n_{2}})} and h ω p ( n 1 × n 2 ) {h^{p}_{\omega}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} to h ω p ( n 1 × n 2 ) {h^{p}_{\omega}(\mathbb{R}^{n_{1}}\times\mathbb{R}^{n_{2}})} for all 0 < p 1 {0<p\leq 1} , which sharpens our earlier result even in the unweighted case requiring max { n 1 n 1 + 1 , n 2 n 2 + 1 } < p 1 . \max\Bigl{\{}\frac{n_{1}}{n_{1}+1},\frac{n_{2}}{n_{2}+1}\Bigr{\}}<p\leq 1.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3