An Investigation of Energy Consumption, Solar Fraction and Hybrid Photovoltaic–Thermal Solar Dryer Parameters in Drying of Chamomile Flower

Author:

Minaei Saeid,Motevali Ali,Ghobadian Barat,Banakar Ahmad,Samadi Seyed Hashem

Abstract

Abstract In this research, drying of a medicinal plant (chamomile) in a hybrid photovoltaic–thermal solar dryer with and without heat pump was investigated. The experiments were performed at three air speeds (0.5, 1, and 1.5 m/s), three levels of air temperature (40, 50, and 60°C), with and without using a heat pump. Results of analysis indicated that adding a heat pump to the photovoltaic solar dryer decreases drying time, energy consumption, and required specific energy. Solar energy fraction increased with decreasing air temperature and velocity. Analysis of the dryer-related parameters showed that the maximum and minimum thermal efficiencies were 33.8 and 16.4%, respectively, both in the no-heat-pump mode while with the heat pump, its maximum and minimum values were 38.4 and 19.7%, respectively. Moreover, the highest and lowest electrical efficiencies for the no-heat-pump mode were 13.4 and 9.1%, respectively; while using the heat pump, its maximum and minimum values were 14.1 and 10.4%, respectively. Results of analyzing the dryer’s coefficient of performance for drying chamomile showed that the highest and lowest coefficients of performance were 3.41 and 1.82, respectively. Eleven mathematical models were tested, and Page’s model was selected as the best for describing the drying behavior of chamomile flower.

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3