Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties

Author:

Eshghi Mahsa1,Kamali-Shojaei Asa2,Vaghari Hamideh1,Najian Yahya3,Mohebian Zahra3,Ahmadi Omid1,Jafarizadeh-Malmiri Hoda14

Affiliation:

1. Department of Food Engineering, Faculty of Chemical Engineering, Sahand University of Technology , East Azarbaijan , Tabriz , Iran

2. Department of Food Science and Technology, Faculty of Agriculture, Afagh Higher Education Institute , West Azarbaijan , Urmia , Iran

3. Research and Development Department, Najian Herbal Group , East Azarbaijan , Tabriz , Iran

4. Department of Food Science and Technology, Applied Scientific Training Center of Shirin Asal Food Industries Group , Tabriz , Iran

Abstract

Abstract Due to high antimicrobial activity against numerous microorganisms, silver nanoparticles (AgNPs) are being utilized in various areas. Microwave-accelerated AgNPs synthesis using Corylus avellana leaf extract was evaluated. Based on randomly central composite design, 13 mixture solutions containing different amounts of the prepared extract (0.10–0.90 mL) and 1 mM silver nitrate solution (15–25 mL) were prepared and exposed to microwave irradiation for 180 s. Response surface methodology was utilized to evaluate the effects of the two independent variables on particle size and concentration of the synthesized AgNPs, as manifested in the place of broad emission peak (λ max) and its absorbance unit, respectively. Fourier transform infrared spectroscopy analysis indicated that the two hydroxyl and carboxylic acid functional groups with reducing activity existed in the prepared extract. Dynamic light scattering and transmission electron microscopy analyses revealed that the formed spherical AgNPs using optimum amounts of C. avellana leaf extract (0.9 mL) and 1 mM silver nitrate solution (25 mL) had minimum particle size (103.5 nm) and polydispersity index (PDI) (0.209), and maximum concentration (140 ppm) and zeta potential (−21.8 mV). Results indicated that the formed AgNPs had high fungicidal effects against the spoiled fungi of Colletotrichum coccodes and Penicillium digitatum.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3