Microwave-accelerated heating technique in fabrication of silver nanoparticles using propolis extract: optimization and characterization

Author:

Ahadi Farhan1,Javadi Afshin12,Jafarizadeh-Malmiri Hoda3,Anarjan Navideh14,Mirzaei Hamid1

Affiliation:

1. Department of Food Hygiene, Faculty of Veterinary , Tabriz Medical Science, Islamic Azad University , Tabriz , Iran

2. Health Promotion Research Center, Tabriz Medical Sciences , Islamic Azad University , Tabriz , Iran

3. Faculty of Chemical Engineering , Sahand University of Technology , 51335-1996 Sahand, East Azarbaijan , Tabriz , Iran

4. Food and Drug Safety Research, Tabriz University of Medical Sciences , Tabriz , Iran

Abstract

Abstract Silver nanoparticle (AgNPs) is known as a new generation of antibiotics with high bactericidal activity and resistance toward numerous bacteria strains. In the present study, AgNPs were synthesized using propolis extract and microwave heating technique. Results indicated that, the prepared hydroalcoholic propolis extract had brix, turbidity, total phenol content and antioxidant activity of 5.21° Bx, 1.75 % a.u., 82.52 mg/g (gallic acid) and 93.32 %, respectively. FTIR analysis also indicated that the prepared extract had several main functional groups such as hydroxyl, carboxyl, amide I, amin and esters, which those could act as reducing and stabilizing agents in fabrication of stable AgNPs. Furthermore, GC-MS analysis demonstrated that alpha-terpinene, coumaran, p-methoxycinnamic acid, dimethyl caffeic acid and pinostrobin chalcone were the main bioactive compounds of the prepared propolis extract. Results revealed that AgNPs with small particle size (86 nm) and polydespersity index (0.299), and high zeta potential (−23.34) values could be synthesized using 0.1 mL of the extract in combination to 9 mL silver nitrate (1 mM) under microwave heating for 30 s. TEM analysis demonstrated that spherical fabricated AgNPs had uniform particle size distribution with particle size of less than 100 nm. Finally, synthesized AgNps indicated higher bactericidal activity against Listeria monocytogenes and Escherichia coli, with obtained clear zone diameter of 22 and 19 mm, respectively.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3