Investigating the impact of dissolved natural gas on the flow characteristics of multicomponent fluid in pipelines

Author:

Ismayilov Gafar G.1,Fataliyev Vugar M.2,Iskenderov Elman Kh.3

Affiliation:

1. Azerbaijan State Oil and Industry University, FacultyGas, Petroleum and Mining , Baku , Azerbaijan

2. Azerbaijan National Academy of Sciences, Institute Geology and Geophysics , Baku , Azerbaijan

3. Azerbaijan State Oil and Industry University, Department Oil and Gas Transportation and Storage , Baku , Azerbaijan

Abstract

Abstract The conventional equations for describing the flow characteristics of the mixtures merely consider fluid that is homogenic, if it is above the bubble point conditions but ignore that a system containing sub-micron sized gas or vapor bubbles distributed throughout the volume of the liquid, which can exhibit unexpected heterogenic and complex phase properties. In this paper, a new mathematical model for the flowing gas-liquid mixture is presented, which has been proposed considering the colloidal feature of the system above the saturation or bubble point pressure. This approach is more in line with the actual dynamic performance of the oil and gas mixture export pipeline. Experimental data, simulations and field case studies validate the new proposed mathematical model of flow characteristics in pipeline. The obtained results confirmed that the calculated data are in good agreement with the experimental data. Based on Azerbaijan oil-gas-condensate field “Guneshli” data, this new model was used for calculating the condition in which the transformation of the flow characteristics from stable into instable is occurred. It has been discovered that the flow becomes unstable at a pressure about 30% higher than Bubble Point Pressure, which causes pulsation effect in the pipeline structure. However, homogenic behavior should be observed in this hydrodynamic condition. Also, the model provides a guideline on how to optimize the flow rate by adjusting the pipeline parameters to minimize the flow resistance, liquid slugging and hydraulic hammering effects, which cause instable operation.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3