Author:
Erdmann Andreas,Xu Dongbo,Evanschitzky Peter,Philipsen Vicky,Luong Vu,Hendrickx Eric
Abstract
AbstractThe reflection and diffraction of extreme ultraviolet (EUV) light from lithographic masks and the projection imaging of these masks by all-reflective systems introduce several significant imaging artifacts. The off-axis illumination of the mask causes asymmetric shadowing, a size bias between features with different orientations and telecentricity errors. The image contrast varies with the feature orientation and can easily drop far below intuitively expected values. The deformation of the wavefront or phase of the incident light by thick absorbers generates aberration-like effects, especially variations of the best-focus (BF) position vs. the pitch and size of the imaged patterns. Partial reflection of light from the top of the absorber generates a weak secondary image, which superposes with the main image. Based on a discussion of the root causes of these phenomena, we employ mask diffraction and imaging analysis for a quantitative analysis of these effects for standard EUV masks. Simulations for various non-standard types of mask stacks (e.g. etched multilayers, buried shifters, etc.) and for various non-standard absorber materials are used to explore the imaging capabilities of alternative masks for EUV lithography. Finally, an outlook at anamorphic systems for larger numerical apertures is given.
Subject
Instrumentation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献