Crystal structures of complexes of mouse thymidylate synthase crystallized with N4-OH-dCMP alone or in the presence of N5,10-methylenetetrahydrofolate

Author:

Dowierciał Anna1,Jarmuła Adam1,Wilk Piotr1,Rypniewski Wojciech2,Kierdaszuk Borys3,Rode Wojciech1

Affiliation:

1. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland

2. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

3. Warsaw University, Institute of Experimental Physics, Warsaw, Poland

Abstract

Abstract To solve the inhibition mechanism of thymidylate synthase (TS) by N4-hydroxy-dCMP (N4-OH-dCMP), crystallographic studies were undertaken. Structures of three mouse TS (mTS) complexes with the inhibitor were solved, based on crystals formed by the enzyme protein in the presence of either only N4-OH-dCMP [crystal A, belonging to the space group C 1 2 1, with two monomers in asymmetric unit (ASU), measured to 1.75 Å resolution] or both N4-OH-dCMP and N5,10 -methylenetetrahydrofolate (mTHF) (crystals B and C, both belonging to the space group C 2 2 21, each with a single monomer in ASU, measured to resolution of 1.35 Å and 1.17 Å, respectively). Whereas crystal A-based structure revealed the mTS-N4-OH-dCMP binary complex, as expected, crystals B- and C-based structures showed the enzyme to be involved in a ternary complex with N4-OH-dCMP and noncovalently bound dihydrofolate (DHF), instead of expected mTHF, suggesting the inhibition to be a consequence of an abortive enzyme-catalyzed reaction, involving a transfer of the one-carbon group to a hitherto unknown site and oxidation of THF to DHF. Moreover, both C(5) and C(6) inhibitor atoms showed sp3 hybridization, suggesting C(5) reduction, with no apparent indication of C(5) proton release. In accordance with our previous results, in all subunits of these structures the inhibitor molecule was identified as the anti rotamer of imino tautomer, forming, similar to deoxyuridine monophosphate, two hydrogen bonds with a conservative asparagine (mouse Asn220) side chain.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3