Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry

Author:

Kim Jong Sik,Gao Jie,Terziev Nasko,Cuccui Ignazia,Daniel Geoffrey

Abstract

Abstract Changes in structure and lignin chemistry were investigated in ash wood thermally modified (TMW) by the thermo-vacuum (Termovuoto) process for 3 h at 190–220°C by means of light, fluorescence, and transmission electron (TEM) microscopy combined with histo/cytochemistry. Variation in changes in native cell color in TMWs was positively correlated with differences in lignin content between cell types and cell wall regions in the reference wood. Histochemical staining showed increasing amounts of acidic groups in TMWs with different response to ethanol extraction between secondary cell walls and CMLcc (compound middle lamella/middle lamella cell corner) regions. Fluorescence microscopy of TMWs and references showed a difference in intensity and color emission of lignin autofluorescence, reflecting modification of lignin in TMWs. Changes in histochemistry and fluorescence were prominent at and above 200°C. With TEM, increased intensity of lignin staining and distortion of fiber S1 layers were detected in TMW treated for 3 h at 220°C (TMW3 h, 220°C). TMW3 h, 220°C differed significantly in molecular ultrastructure of fiber cell walls compared to references, such as loss of the lamellar structure and size and distribution of lignin aggregates. The modification in CMLcc structure in ash TMW3 h, 220°C is different from that of softwoods.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference66 articles.

1. modification by heat treatment a;Esteves;review BioResources,2009

2. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood;Donaldson,2013

3. Loss of strength in biologically degraded thermally modified wood;Råberg;BioResources,2012

4. Magnetic resonance studies of thermally modified wood;Sivonen;Holzforschung,2002

5. Fluorescence spectroscopy for chromophore studies on bleached kraft pulps;Liukko;Holzforschung,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3