Magnetic Resonance Studies of Thermally Modified Wood

Author:

Sivonen H.,Maunu S. L.,Sundholm F.,Jämsä S.,Viitaniemi P.

Abstract

Summary Thermal modification of wood produces a wood material with many interesting properties, such as enhanced dimensional stability, lower equilibrium moisture content and increased biological durability. Changes in the chemical structure of pine (Pinus sylvestris) caused by thermal treatment were investigated by studying various components of wood using 13C CPMAS NMR spectroscopy. Electron spin resonance (ESR) spectroscopy on the same set of samples was used to study the formation and stability of free radicals formed during the treatment. The most remarkable changes revealed by solid state NMR were the increase in relative crystallinity of cellulose and destruction and deacetylation of hemicelluloses. Changes in the lignin fraction were mostly registered as diminishment in the methoxyl content, although the intensity of the aromatic region increased relative to the carbohydrate fraction during the treatment. Increase in the intensities of the ESR signals from thermally treated wood samples proves the formation of stable free radicals. In addition, radical formation is believed to take part in condensation reactions leading to crosslinks within the lignin and possibly between lignin and other wood components. Both of the methods used indicate that the changes are most remarkable when the treatment temperature is over 200°C.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3