Evaluation of Wood Quality Traits in Salix viminalis Useful for Biofuels: Characterization and Method Development

Author:

Gao Jie,Jebrane MohamedORCID,Terziev NaskoORCID,Daniel GeoffreyORCID

Abstract

Salix (willow) is a well-known coppice plant that has been used as a source for bioenergy for decades. With recent developments in changing from a fossil-based to a circular bioeconomy, greater interest has been orientated towards willow as a potential source of biomass for transport biofuels. This has created increasing interest for breeding strategies to produce interesting genotypic and phenotypic traits in different willow varieties. In the present study, 326 genetically distinct clones and several commercial varieties of S. viminalis were analyzed using complementary approaches including density, chemical, image, histochemical, and morphometric analyses. A systematic approach was adopted whereby the basal regions of harvested stems were separated and used in all studies to aid comparisons. Density analyses were performed on all clone individuals, and from the results, 20 individual plants representing 19 clones were selected for the more in-depth analyses (chemical, image analysis, histochemical, and morphometric). The absolute dry density of the clones selected varied between ca. 300 and 660 kg/m3 with less variation seen in the commercial S. viminalis varieties (ca. 450–520 kg/m3). Selected clones for chemical analysis showed the largest variation in glucose (47.3%–60.1%; i.e., cellulose) and total sugar content, which ranged between ca. 61 and 77% and only ca. 16 and 22% for lignin. Image analyses of entire basal stem sections showed presence of tension wood in variable amounts (ca. 7%–39%) with characteristic G-fibers containing cellulose-rich and non-lignified gelatinous layers. Several of the clones showing prominent tension wood also showed high glucose and total sugar content as well as low lignin levels. A morphometric approach using an optical fiber analyzer (OFA) for analyzing 1000 s (minimum 100,000 particles) of macerated fibers was evaluated as a convenient tool for determining the presence of tension wood in stem samples. Statistical analyses showed that for S. viminalis stems of the same density and thickness, the OFA approach could separate tension wood fibers from normal wood fibers by length but not fiber width. Results emphasized considerable variability between the clones in the physical and chemical approaches adopted, but that a common aspect for all clones was the occurrence of tension wood. Since tension wood with G-fibers and cellulose-rich G-layers represents an increased source of readily available non-recalcitrant cellulose for biofuels, S. viminalis breeding programs should be orientated towards determining factors for its enhancement.

Funder

Svenska Forskningsrådet Formas

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3