Author:
Chabera P.,Boczkowska A.,Witek A.,Oziębło A.
Abstract
Abstract
The paper presents the experimental results of fabrication and characterization of ceramic- elastomer composites. They were obtained using pressure infiltration of porous ceramics by elastomer As a result the composites in which two phases are interpenetrating three-dimensionally and topologically throughout the microstructure were obtained. In order to enhance mechanical properties of preforms a high isostatic pressure method was utilized. The obtained ceramic preforms with porosity gradient within the range of 20-40% as well as composites were characterized by X-ray tomography. The effect of volume fraction of pores on residual porosity of composites was examined. These results are in accordance with SEM images which show the microstructure of composites without any delaminations and voids. Such composites exhibit a high initial strength with the ability to sustain large deformations due to combining the ceramic stiffness and rubbery elasticity of elastomer. Static compression tests for the obtained composites were carried out and the energy dissipated during compression was calculated as the area under the stress-strain curve. The dynamic behavior of the composite was investigated using the split Hopkinson pressure bar technique. It was found that ceramic-elastomer composites effectively dissipate the energy. Moreover, a ballistic test was carried out using armor piercing bullets.
Subject
Artificial Intelligence,Computer Networks and Communications,General Engineering,Information Systems,Atomic and Molecular Physics, and Optics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献