Influence of Fabrication Method and Surface Modification of Alumina Ceramic on the Microstructure and Mechanical Properties of Ceramic–Elastomer Interpenetrating Phase Composites (IPCs)

Author:

Kozera PaulinaORCID,Boczkowska AnnaORCID,Perkowski Krzysztof,Małek MarcinORCID,Kluczyński JanuszORCID

Abstract

The paper presents experimental results of the work conducted to improve the adhesion between alumina ceramics and urea-urethane elastomer in the interpenetrating phase composites (IPCs), in which these two phases are interpenetrating three-dimensionally and topologically throughout the microstructure. Measurements of the contact angle, surface roughness, and shear tests were used to evaluate the effectivity and select the quantity of a silane coupling agent and the ceramic fabrication method. The tests were conducted using samples of dense alumina ceramic obtained by three- or four-step methods. In the four-step process, hot isostatic pressing (HIP) was applied additionally. As a result of the coupling agent coat and HIP application, the ceramic substrate wettability by the elastomer was improved. The water contact angle was reduced from 80 to 60%. In the next step, porous ceramic preforms were fabricated using HIP sintering and a solution of silane coupling agent treated their surface. The composites were produced using vacuum-pressure infiltration of porous alumina ceramics by urea-urethane elastomer in liquid form. The influence of the coupling agent application on the microstructure and mechanical properties of the composites was estimated. The microstructure of the composites was identified using SEM microscopy and X-ray tomography. As a result of using the coupling agent, residual porosity decreased from 7 to 2%, and compressive strength, as well as stress at a plateau, increased by more than 20%, from 25 to 33 MPa and from 15 to 24 MPa, respectively, for the composites fabricated by infiltration ceramic preforms with 40% of porosity.

Funder

Dean of Faculty of Civil Engineering and Geodesy, Military University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3