The Influence of the Microstructure of Ceramic-Elastomer Composites on Their Energy Absorption Capability

Author:

Kozera Paulina,Boczkowska AnnaORCID,Kozera Rafał,Małek MarcinORCID,Idczak WłodzimierzORCID

Abstract

The paper presents the experimental results of static and dynamic compressive tests conducted on ceramic-elastomer composites. The alumina ceramic preforms were fabricated by the four-step method: ceramic mixture preparation, consolidation under pressure, presintering, and sintering under pressure, respectively. To obtain ceramic preforms with a similar volume fraction of open pores, but with different pore sizes, alumina powder with different particle size and a ceramic binder were used, as well as pore-forming agents that were evenly distributed throughout the volume of the molding mass. The composites were obtained using vacuum pressure infiltration of porous alumina ceramic by urea-urethane elastomer in liquid form. As a result, the obtained composites were characterized by two phases that interpenetrated three-dimensionally and topologically throughout the microstructure. The microstructure of the ceramic preforms was revealed by X-ray tomography, which indicated that the alumina preforms had similar porosity of approximately 40% vol. but different pore diameter in the range of 6 to 34 µm. After composite fabrication, image analysis was carried out. Due to the microstructure of the ceramic preforms, the composites differed in the specific surface fraction of the interphase boundaries (Sv). The highest value of the Sv parameter was achieved for composite fabricated by infiltration method of using ceramic preform with the smallest pore size. Static and dynamic tests were carried out using different strain rate: 1.4·10−3, 7·10−2, 1.4·10−1, and 3·103 s−1. Compressive strength, stress at plateau zone, and absorbed energy were determined. It was found that the ceramic-elastomer composites’ ability to absorb energy depended on the specific surface fraction of the interphase boundaries and achieved a value between 15.3 MJ/m3 in static test and 51.1 MJ/m3 for dynamic strain rate.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3