Existence of Solutions to Fractional p-Laplacian Systems with Homogeneous Nonlinearities of Critical Sobolev Growth

Author:

Lu Guozhen1,Shen Yansheng2

Affiliation:

1. Department of Mathematics , University of Connecticut , Storrs , CT 06269 , USA

2. School of Mathematical Sciences , Beijing Normal University , Laboratory of Mathematics and Complex Systems, Ministry of Education , Beijing 100875 , P. R. China

Abstract

Abstract In this paper, we investigate the existence of nontrivial solutions to the following fractional p-Laplacian system with homogeneous nonlinearities of critical Sobolev growth: { ( - Δ p ) s u = Q u ( u , v ) + H u ( u , v ) in  Ω , ( - Δ p ) s v = Q v ( u , v ) + H v ( u , v ) in  Ω , u = v = 0 in  N Ω , u , v 0 , u , v 0 in  Ω , \left\{\begin{aligned} \displaystyle{}(-\Delta_{p})^{s}u&\displaystyle=Q_{u}(u% ,v)+H_{u}(u,v)&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle(-\Delta_{p})^{s}v&\displaystyle=Q_{v}(u,v)+H_{v}(u,v)&&% \displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u=v&\displaystyle=0&&\displaystyle\phantom{}\text{in }\mathbb{R}% ^{N}\setminus\Omega,\\ \displaystyle u,v&\displaystyle\geq 0,\quad u,v\neq 0&&\displaystyle\phantom{}% \text{in }\Omega,\end{aligned}\right. where ( - Δ p ) s {(-\Delta_{p})^{s}} denotes the fractional p-Laplacian operator, p > 1 {p>1} , s ( 0 , 1 ) {s\in(0,1)} , p s < N {ps<N} , p s * = N p N - p s {p_{s}^{*}=\frac{Np}{N-ps}} is the critical Sobolev exponent, Ω is a bounded domain in N {\mathbb{R}^{N}} with Lipschitz boundary, and Q and H are homogeneous functions of degrees p and q with p < q p s {p<q\leq p^{\ast}_{s}} and Q u {Q_{u}} and Q v {Q_{v}} are the partial derivatives with respect to u and v, respectively. To establish our existence result, we need to prove a concentration-compactness principle associated with the fractional p-Laplacian system for the fractional order Sobolev spaces in bounded domains which is significantly more difficult to prove than in the case of single fractional p-Laplacian equation and is of its independent interest (see Lemma 5.1). Our existence results can be regarded as an extension and improvement of those corresponding ones both for the nonlinear system of classical p-Laplacian operators (i.e., s = 1 {s=1} ) and for the single fractional p-Laplacian operator in the literature. Even a special case of our main results on systems of fractional Laplacian ( - Δ ) s {(-\Delta)^{s}} (i.e., p = 2 {p=2} and 0 < s < 1 {0<s<1} ) has not been studied in the literature before.

Funder

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3