Affiliation:
1. School of Mathematical Sciences, Beihang University (BUAA) , Beijing 100191 , P.R. China
2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing , 100190 , P.R. China
Abstract
Abstract
In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space
R
+
2
${\mathbb{R}}_{+}^{2}$
:
(
−
Δ
)
α
2
u
(
x
)
=
|
x
|
a
u
p
1
(
x
)
e
q
1
v
(
x
)
,
x
∈
R
+
2
,
(
−
Δ
)
v
(
x
)
=
|
x
|
b
u
p
2
(
x
)
e
q
2
v
(
x
)
,
x
∈
R
+
2
,
$\begin{cases}{\left(-{\Delta}\right)}^{\frac{\alpha }{2}}u\left(x\right)=\vert x{\vert }^{a}{u}^{{p}_{1}}\left(x\right){e}^{{q}_{1}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \\ \left(-{\Delta}\right)v\left(x\right)=\vert x{\vert }^{b}{u}^{{p}_{2}}\left(x\right){e}^{{q}_{2}v\left(x\right)}, x\in {\mathbb{R}}_{+}^{2},\quad \hfill \end{cases}$
with Dirichlet boundary conditions, where 0 < α < 2 and p
1, p
2, q
1, q
2 > 0. First, we derived the integral representation formula corresponding to the above system under the assumption
p
1
≥
−
2
a
α
−
1
${p}_{1}\ge -\frac{2a}{\alpha }-1$
. Then, we prove Liouville theorem for solutions to the above system via the method of scaling spheres.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Fundamental Research Funds for the Central Universities
Reference61 articles.
1. W. Chen, Y. Li, and P. Ma, The Fractional Laplacian, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd., 2019, p. 350.
2. L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian,” Comm. PDEs, vol. 32, no. 7–9, pp. 1245–1260, 2007. https://doi.org/10.1080/03605300600987306.
3. L. Caffarelli and L. Vasseur, “Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,” Ann. of Math., vol. 171, no. 3, pp. 1903–1930, 2010.
4. S.-Y. A. Chang and M. González, “Fractional Laplacian in conformal geometry,” Adv. Math., vol. 226, no. 2, pp. 1410–1432, 2011, https://doi.org/10.1016/j.aim.2010.07.016.
5. B. Chow, “Aleksandrov reflection for extrinsic geometric flows of Euclidean hypersurfaces. (English summary),” Adv. Nonlinear Stud., vol. 23, no. 1, p. 20220034, 2023. https://doi.org/10.1515/ans-2022-0034.