Existence and multiplicity of solutions for fractional p-Laplacian equation involving critical concave-convex nonlinearities

Author:

Ye Dong1,Zhang Weimin1

Affiliation:

1. School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) & Shanghai Key Laboratory of PMMP , East China Normal University , Shanghai 200241 , China

Abstract

Abstract We investigate the following fractional p-Laplacian convex-concave problem: ( P λ ) ( Δ ) p s u = λ | u | q 2 u + | u | p s * 2 u in Ω , u = 0 in R n \ Ω , $$\left({P}_{\lambda }\right) \begin{cases}\begin{aligned}\hfill {\left(-{\Delta}\right)}_{p}^{s}u& =\lambda \vert u{\vert }^{q-2}u+\vert u{\vert }^{{p}_{s}^{{\ast}}-2}u\hfill & \hfill & \quad \text{in} {\Omega},\hfill \\ \hfill u& =0 \hfill & \hfill & \quad \text{in} {\mathbb{R}}^{n}{\backslash}{\Omega},\hfill \end{aligned}\quad \hfill \end{cases}$$ where Ω is a bounded C 1,1 domain in R n ${\mathbb{R}}^{n}$ , s ∈ (0, 1), p > q > 1, n > sp, λ > 0, and p s * = n p n s p ${p}_{s}^{{\ast}}=\frac{np}{n-sp}$ is the critical Sobolev exponent. Our analysis extends classical works (A. Ambrosetti, H. Brezis, and G. Cerami, “Combined effects of concave and convex nonlinearities in some elliptic problems,” J. Funct. Anal., vol. 122, no. 2, pp. 519–543, 1994, B. Barrios, E. Colorado, R. Servadei, and F. Soria, “A critical fractional equation with concave-convex power nonlinearities,” Ann. Inst. Henri Poincare Anal. Non Lineaire, vol. 32, no. 4, pp. 875–900, 2015, J. García Azorero, J. Manfredi, and I. Peral Alonso, “Sobolev versus Hölder local minimizer and global multiplicity for some quasilinear elliptic equations,” Commun. Contemp. Math., vol. 2, no. 3, pp. 385–404, 2000) to fractional p-Laplacian. Owing to the nonlinear and nonlocal properties of ( Δ ) p s ${\left(-{\Delta}\right)}_{p}^{s}$ , we need to overcome many difficulties and apply notably different approaches, due to the lack of Picone identity, the stability theory, and the strong comparison principle. We show first a dichotomy result: a positive W 0 s , p ( Ω ) ${W}_{0}^{s,p}\left({\Omega}\right)$ solution of (P λ ) exists if and only if λ ∈ (0, Λ] with an extremal value Λ ∈ (0, ∞). The W 0 s , p ( Ω ) ${W}_{0}^{s,p}\left({\Omega}\right)$ regularity for the extremal solution seems to be unknown regardless of whether s = 1 or s ∈ (0, 1). When p ≥ 2, p − 1 < q < p and n > s p ( q + 1 ) q + 1 p $n{ >}\frac{sp\left(q+1\right)}{q+1-p}$ , we get two positive solutions for (P λ ) with small λ > 0. Here the mountain pass structure is more involved than the classical situations due to the lack of explicit minimizers for the Sobolev embedding, we should proceed carefully and simultaneously the construction of mountain pass geometry and the estimate for mountain pass level. Finally, we show another new result for (P λ ) and all p > q > 1: without sign constraint, (P λ ) possesses infinitely many solutions when λ > 0 is small enough. Here we use the Z 2 ${\mathbb{Z}}_{2}$ -genus theory, based on a space decomposition for reflexible and separable Banach spaces, which has its own interest.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3