LCBRG: A lane-level road cluster mining algorithm with bidirectional region growing

Author:

Gong Xianyong1,Wu Fang1,Xing Ruixing1,Du Jiawei1,Liu Chengyi1

Affiliation:

1. Institute of Surveying and Mapping, Information Engineering University , Kexue Road 62 , Zhengzhou 450001 , China

Abstract

Abstract Lane-level road cluster is a most representative phenomenon in road networks and is vital to spatial data mining, cartographic generalization, and data integration. In this article, a lane-level road cluster recognition method was proposed. First, the conception of lane-level road cluster and our motivation were addressed and the spatial characteristics were given. Second, a region growing cluster algorithm was defined to recognize lane-level road clusters, where constraints including distance and orientation were used. A novel moving distance (MD) metric was proposed to measure the distance of two lines, which can effectively handle the non-uniformly distributed vertexes, heterogeneous length, inharmonious spatial alignment, and complex shape. Experiments demonstrated that the proposed method can effectively recognize lane-level road clusters with the agreement to human spatial cognition.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3