Affiliation:
1. Faculty of Design and Architecture, Zhejiang Wanli University, Ningbo, China
2. Logistics and E-commerce College, Zhejiang Wanli University, Ningbo, China
Abstract
In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of the urban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Subject
General Health Professions