Bump feature detection of the road surface based on the Bi-LSTM

Author:

Lyu Haiyang12,Xu Ke12,Jiao Donglai12,Zhong Qiqi12

Affiliation:

1. Smart Health Big Data Analysis and Location Services Engineering Research Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications , Nanjing 210023 , China

2. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications , Nanjing 210023 , China

Abstract

Abstract The road network is the basic facility for transportation systems in the city. Every day, a large number of vehicles move on the road and exert different pressure on the ground, which leads to various problems for the road surface, such as the bump features of the road surface (BFRS). However, traditional methods, such as detecting BFRS manually or with professional equipment, require a lot of professional management and devices. Based on the mobile sensor and the bidirectional long short-term memory (Bi-LSTM), a detection method for BFRS is proposed. The BFRS detection method proposed in this article solves the problem that other BFRS detection methods cannot detect large area road surface efficiently and provides an algorithm idea for efficient detection of large area road surface BFRS. The mobile phone with multi-sensors is carried on vehicles, and the BFRS information is logged during the movements. The orientation of the mobile is computed according to the gyroscope. The actual posture of the acceleration sensor is adjusted with the reference coordinate system, whose z-axis is vertical to the ground. This article uses the adjusted acceleration data as the training dataset and labels it according to time stamps and videos recorded by the driving recorder. Finally, the Bi-LSTM is constructed and trained, followed by the BFRS detection. The results show that it can detect BFRS in different regions. The detection accuracy of the campus section and the extended experiment was 92.85 and 87.99%, respectively.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3