Author:
Tobimatsu Yuki,Takano Toshiyuki,Kamitakahara Hiroshi,Nakatsubo Fumiaki
Abstract
Abstract
Horseradish peroxidase (HRP)-catalyzed dehydrogenative polymerization of guaiacyl (G) and syringyl (S)-type monolignol γ-O-glucosides, isoconiferin (iso-G) and isosyringin (iso-S), which contain a hydrophilic glucosyl unit on γ-position of coniferyl alcohol and sinapyl alcohol, respectively, was monitored by gel permeation chromatography coupled with photodiode array detection (GPC-PDA). Contrary to the conventional dehydrogenative polymerization of monolignols, the polymerization of the glycosides produces water-soluble synthetic lignins (DHPs) in a homogeneous aqueous phase. Taking advantage of this unique reaction system, the method was developed to follow the changes of molecular weights in the course of DHP formations. Moreover, PDA detection permits determination of oligomeric S-type quinone methide intermediates (QMs) formed as stable transient compounds during polymerization of iso-S. A detailed comparison of the polymerization profiles revealed entirely different behaviors of G- and S-type monomers. The data strongly support the view that the low reactivity of oligomeric S-type QMs impedes the formation of DHPs from S-type monomers. In copolymerization of G- and S-type monomers, it is conceivable that G-type phenolic hydroxyl groups serve as good nucleophilic reactants to scavenge S-type QMs resulting in efficient production of DHPs. As a consequence, the present approach can be a powerful tool to study the in vitro dehydrogenative polymerization providing further mechanistic insights into lignin polymerization in vivo.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献