Author:
Elumalai Sasikumar,Tobimatsu Yuki,Grabber John H,Pan Xuejun,Ralph John
Abstract
Abstract
Background
Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production.
Results
In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by β–O–4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%) that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls.
Conclusions
It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献