Affiliation:
1. Mathematical College, Sichuan University, Chengdu 610064, CHINA
Abstract
Abstract
Erdős and Niven proved that for any positive integers m and d, there are only finitely many positive integers n for which one or more of the elementary symmetric functions of 1/m, 1/(m + d), . . . , 1/(m + nd) are integers. In this paper, we show that if n ≥ 2, then none of the elementary symmetric functions of 1, 1/3, . . . , 1/(2n − 1) is an integer
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献