Affiliation:
1. Mathematical College, Sichuan University, Chengdu 610064, P. R. China
Abstract
Let [Formula: see text] and [Formula: see text] be positive integers. We denote by [Formula: see text] the 2-adic valuation of [Formula: see text]. The Stirling numbers of the first kind, denoted by [Formula: see text], count the number of permutations of [Formula: see text] elements with [Formula: see text] disjoint cycles. In recent years, Lengyel, Komatsu and Young, Leonetti and Sanna, and Adelberg made some progress on the study of the [Formula: see text]-adic valuations of [Formula: see text]. In this paper, by introducing the concept of [Formula: see text]th Stirling numbers of the first kind and providing a detailed 2-adic analysis, we show an explicit formula on the 2-adic valuation of [Formula: see text]. We also prove that [Formula: see text] holds for all integers [Formula: see text] between 1 and [Formula: see text]. As a corollary, we show that [Formula: see text] if [Formula: see text] is odd and [Formula: see text]. This confirms partially a conjecture of Lengyel raised in 2015. Furthermore, we show that if [Formula: see text], then [Formula: see text] and [Formula: see text], where [Formula: see text] stands for the [Formula: see text]th elementary symmetric functions of [Formula: see text]. The latter one supports the conjecture of Leonetti and Sanna suggested in 2017.
Funder
National Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献