Affiliation:
1. Moulay Ismail University of Meknes , Faculty of Sciences and Technology , P.O. Box 509-Boutalamine, 52 000 , Errachidia , Morocco
Abstract
Abstract
Let K = ℚ
(
p
d
2
4
)
$\begin{array}{}
\displaystyle
(\sqrt[4]{pd^{2}})
\end{array}$
be a real pure quartic number field and k = ℚ(
p
$\begin{array}{}
\displaystyle
\sqrt{p}
\end{array}$
) its real quadratic subfield, where p ≡ 5 (mod 8) is a prime integer and d an odd square-free integer coprime to p. In this work, we calculate r
2(K), the 2-rank of the class group of K, in terms of the number of prime divisors of d that decompose or remain inert in ℚ(
p
$\begin{array}{}
\displaystyle
\sqrt{p}
\end{array}$
), then we will deduce forms of d satisfying r
2(K) = 2. In the last case, the 4-rank of the class group of K is given too.
Reference16 articles.
1. Azizi, A.—Taous, M.: Determination des corps k = k=Q(d,i)$\begin{array}{}
\displaystyle
k = \mathbb{Q}(\sqrt{d}, i)
\end{array}$dont les 2-groupes de classes sont de type (2, 4) ou (2, 2, 2), Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116.
2. Azizi, A.—Mouhib, A.: Sur le rang du 2-groupe de classes deQ(m,d)$\begin{array}{}
\displaystyle
\mathbb{Q}( \sqrt{m}, \sqrt{d})
\end{array}$oú m = 2 ou un premier p ≡ 1 (mod 4), Trans. Amer. Math. Soc. 353(7) (2001), 2741–2752.
3. Azizi, A.—Mouhib, A.: Le 2-rang du groupe de classes de certains corps biquadratiques et applications, Internat. J. Math. 15(2) (2004), 169–182.
4. Azizi, A.—Taous, M.—Zekhnini, A.: On the unit index of some real biquadratic number fields, Turk. J. Math. 42 (2018), 703–715.
5. Brown, E.—Parry, Ch. J.: The 2-class group of certain biquadratic number fields, J. Reine Angew. Math. 295 (1977), 61–71.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献