A Review on Recent Advances in Transient Liquid Phase (TLP) Bonding for Thermoelectric Power Module

Author:

Jung D. H.,Sharma A.,Mayer M.,Jung J. P.

Abstract

Abstract In this study, the authors have reviewed recent advances on the transient liquid phase (TLP) bonding technology for various applications especially power module packaging in view of the recent increasing demand for the production of vehicles, smartphones, semiconductor devices etc. TLP bonding is one of the potential technologies from clean technology that can replace the Pb-base solder technology without causing any serious environmental issues. It is based on the concept of both brazing as well as diffusion bonding. During TLP bonding, the liquid phase is transiently formed at the bonding interface. At this point, the melting point of filler metal increases due to the diffusion of element which degrades the melting point from liquid phase to base metal. Subsequently, the bonding occurs by isothermal solidification at the bonding temperature of liquid phase. Here, after bonding, the melting temperature of the joint layer becomes higher than bonding temperature. This review introduces the various aspects of TLP bonding including its principle, materials, applications, advantages and properties in detail.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference22 articles.

1. Instruments;Barannik;Seismic,2010

2. In th Electronic Components and;Greve;IEEE Technology Conference USA,2014

3. In th Electronic Components and Technology Las;Ikeda;Conference USA,2016

4. In th;Ehrhardt;Proc Electron Compo Tech USA,2014

5. In th International Conference on Solid - State Actuators and Korea;Welch;Sensors Microsystems,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3