A novel signal to image transformation and feature level fusion for multimodal emotion recognition

Author:

Hatipoglu Yilmaz Bahar1,Kose Cemal1

Affiliation:

1. Department of Computer Engineering , Karadeniz Technical University , Trabzon , Turkey

Abstract

Abstract Emotion is one of the most complex and difficult expression to be predicted. Nowadays, many recognition systems that use classification methods have focused on different types of emotion recognition problems. In this paper, we aimed to propose a multimodal fusion method between electroencephalography (EEG) and electrooculography (EOG) signals for emotion recognition. Therefore, before the feature extraction stage, we applied different angle-amplitude transformations to EEG–EOG signals. These transformations take arbitrary time domain signals and convert them two-dimensional images named as Angle-Amplitude Graph (AAG). Then, we extracted image-based features using a scale invariant feature transform method, fused these features originates basically from EEG–EOG and lastly classified with support vector machines. To verify the validity of these proposed methods, we performed experiments on the multimodal DEAP dataset which is a benchmark dataset widely used for emotion analysis with physiological signals. In the experiments, we applied the proposed emotion recognition procedures on the arousal-valence dimensions. We achieved (91.53%) accuracy for the arousal space and (90.31%) for the valence space after fusion. Experimental results showed that the combination of AAG image features belonging to EEG–EOG signals in the baseline angle amplitude transformation approaches enhanced the classification performance on the DEAP dataset.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3