AN EEG-BASED EMOTION RECOGNITION MODEL USING AN INTERACTION DESIGN FRAMEWORK AND DEEP LEARNING

Author:

WANG LI1ORCID,GO JUNGWOOK1ORCID,CHEN XIANG2ORCID

Affiliation:

1. Department of Design, Dongseo University, 88 Jurye-ro, Sasang-gu, Busan 47011, Korea

2. School of Design, Jiangnan University Jiangsu, Wuxi 214122, P. R. China

Abstract

This research makes significant advances in the field of emotion recognition by presenting a new generative adversarial network (GAN) model that integrates deep learning with electroencephalography (EEG). To achieve more accurate data production and real data matching, the model utilizes self-attention and residual neural networks. Additionally, this process is accomplished by substituting an autoencoder for the discriminator in the GAN, and incorporating a reconstruction loss function. We include the self-attention mechanism and residual block in the building of the model to overcome the vanishing gradient problem. This allows the model to acquire information related to emotions in a more in-depth manner, which ultimately results in an improvement in the emotion detection accuracy. The DEAP and MAHNOB-HCI datasets are chosen for the experimental validation portion of this research. These datasets are subsequently compared and analyzed with traditional deep learning methods and well-known emotion identification algorithms. Based on these findings, it is evident that the model that we propose performs exceptionally well on the emotion recognition test, which offers substantial support for studies and applications in this field. In addition, within the context of emotion detection systems, this study places particular emphasis on the crucial role that interaction design frameworks play in enhancing both the user experience and the usability of the system. By pushing the emotion recognition technology boundaries, a new paradigm for the application of deep learning in EEG emotion recognition is provided with this comprehensive research contribution.

Funder

Jiangsu Social Science Foundation

Ministry of Education Humanities and Social Sciences Research Planning Fund Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3