Multimodal information fusion method in emotion recognition in the background of artificial intelligence

Author:

Dai Zhen1,Fei Hongxiao2ORCID,Lian Chunyan1

Affiliation:

1. School of Software Hunan Vocational College Of Science and Technology Changsha China

2. School of Computer Science and Engineering Central South University Changsha China

Abstract

AbstractRecent advances in Semantic IoT data integration have highlighted the importance of multimodal fusion in emotion recognition systems. Human emotions, formed through innate learning and communication, are often revealed through speech and facial expressions. In response, this study proposes a hidden Markov model‐based multimodal fusion emotion detection system, combining speech recognition with facial expressions to enhance emotion recognition rates. The integration of such emotion recognition systems with Semantic IoT data can offer unprecedented insights into human behavior and sentiment analysis, contributing to the advancement of data integration techniques in the context of the Internet of Things. Experimental findings indicate that in single‐modal emotion detection, speech recognition achieves a 76% accuracy rate, while facial expression recognition achieves 78%. However, when state information fusion is applied, the recognition rate increases to 95%, surpassing the national average by 19% and 17% for speech and facial expressions, respectively. This demonstrates the effectiveness of multimodal fusion in emotion recognition, leading to higher recognition rates and reduced workload compared to single‐modal approaches.

Publisher

Wiley

Reference15 articles.

1. Multi-cue fusion for emotion recognition in the wild

2. Speech Emotion Recognition Using Deep Feedforward Neural Network

3. Voice keyword retrieval method using attention mechanism and multimodal information fusion [J];Zhang H;Scientific Programming,2021

4. Face and emotion recognition under complex illumination conditions using deep learning with morphological processing [J];Kshirsagar P;Journal of Interdisciplinary Cycle Research,2021

5. Multi-scale discrepancy adversarial network for crosscorpus speech emotion recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3