Author:
Alghifari Muhammad Fahreza,Gunawan Teddy Surya,Kartiwi Mira
Abstract
Speech emotion recognition (SER) is currently a research hotspot due to its challenging nature but bountiful future prospects. The objective of this research is to utilize Deep Neural Networks (DNNs) to recognize human speech emotion. First, the chosen speech feature Mel-frequency cepstral coefficient (MFCC) were extracted from raw audio data. Second, the speech features extracted were fed into the DNN to train the network. The trained network was then tested onto a set of labelled emotion speech audio and the recognition rate was evaluated. Based on the accuracy rate the MFCC, number of neurons and layers are adjusted for optimization. Moreover, a custom-made database is introduced and validated using the network optimized. The optimum configuration for SER is 13 MFCC, 12 neurons and 2 layers for 3 emotions and 25 MFCC, 21 neurons and 4 layers for 4 emotions, achieving a total recognition rate of 96.3% for 3 emotions and 97.1% for 4 emotions.<em><span style="font-size: 9pt; font-family: Arial, sans-serif;" lang="EN-MY">Speech emotion recognition (SER) is currently a research hotspot due to its challenging nature but bountiful future prospects. The objective of this research is to utilize Deep Neural Networks (DNNs) to recognize human speech emotion. First, the chosen speech feature Mel-frequency cepstral coefficient (MFCC) were extracted from raw audio data. Second, the speech features extracted were fed into the DNN to train the network. The trained network was then tested onto a set of labelled emotion speech audio and the recognition rate was evaluated. Based on the accuracy rate the MFCC, number of neurons and layers are adjusted for optimization. Moreover, a custom-made database is introduced and validated using the network optimized.</span></em><em><span style="font-size: 9pt; font-family: Arial, sans-serif;" lang="EN-MY">The optimum configuration for SER is 13 MFCC, 12 neurons and 2 layers for 3 emotions and 25 MFCC, 21 neurons and 4 layers for 4 emotions, achieving a total recognition rate of 96.3% for 3 emotions and 97.1% for 4 emotions.</span></em>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献