Artificial intelligence based prediction models for rubber compounds

Author:

Uruk Zeynep12,Kiraz Alper1

Affiliation:

1. Department of Industrial Engineering , Sakarya University , 54187 Sakarya , Türkiye

2. R&D Center, DRC Kauçuk , Sakarya , Türkiye

Abstract

Abstract In the rubber industry, rheometric properties are critical in defining processing times and temperatures. These parameters of rubber compounds are determined by time-consuming and expensive laboratory studies performed in a rheometer. Artificial intelligence approaches, on the other hand, may be used to estimate rheometric properties in seconds without the need for any samples or laboratory experiments. In this research, artificial neural network, Gaussian process regression, and support vector regression techniques are used to predict minimum and maximum torque, 30% and 60% cure time of a rubber compound using both process parameters and raw material composition as input. The dataset comprises 1128 batches of the selected rubber compound. A detailed sensitivity analysis is performed to determine the best performing hyperparameters and the prediction performances are expressed as mean absolute percentage error (MAPE). Minimum, maximum, and average MAPE values are presented for each artificial intelligence technique. Besides this research contributes to fill the gap in rubber industry literature, the results obtained also strongly improve the existing literature results.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3