Learning based model for predicting mechanical properties and sustainable filler band for NBR composites using lignin and carbon black

Author:

Kachirayil Antony JORCID,Nambiathodi VaishakORCID,Thomas BonyORCID,Raveendran RadhikaORCID,Varghese SibyORCID,Mukundan Manoj KumarORCID,Rajesh RaghunathanORCID

Abstract

Abstract Experimental determination of mechanical properties of rubber composites, such as tensile strength and hardness, involves complex multistage preparation procedures that are laborious and expensive. In this study, a hybrid filler of carbon black (CB) along with a sustainable filler of lignin is added for reinforcement in the nitrile butadiene rubber (NBR) matrix, with the total filler content varying from 10 parts per hundred rubber (phr) to 80 phr. This work aims to develop a data-driven predictive model for the mechanical properties of rubber composites. An artificial neural network (ANN) model using multilayer feed-forward back-propagation has been created to forecast the tensile strength (Ts) and hardness (Hd) of rubber composites. The model predicts the uniaxial tensile response and hardness using input parameters that include total filler and lignin loading levels. The effectiveness of the suggested prediction method was demonstrated by statistical analysis using confidence intervals, showing a prediction error between 5.47% and 3.23% for the Ts and between 3.03% and 1.85% for Hd at 95% confidence intervals. A sustainable green band could be defined in the developed model, which is handy for designers to replace CB with lignin in various NBR based products, such as hoses, seals, etc., without compromising on tensile strength and hardness.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3