Prediction of Rheometric Properties of Compounds by Using Artificial Neural Networks

Author:

Schwartz Gustavo Ariel1

Affiliation:

1. 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Física, Ciudad Universitaria, Pabellón 1, Buenos Aires (1428), Argentina; e-mail: schwartz@df.uba.ar

Abstract

Abstract The ability of an Artificial Neural Network (ANN) to evaluate the variability of rheometric properties of rubber compounds from their formulation is presented. Because of the complexity and non-linearity of mixing processes, an exact mathematical treatment of the problem is extremely difficult, or even impossible. The use of artificial neural networks (ANNs) might be very useful to analyze these processes, since they have the ability to map nonlinear relationships without prior information about process or system models. In this work a three-layer ANN is used and the optimum parameters are determined. The results are compared with theoretical and experimental published data. The dependence of the rheometric properties as a function of compound components is also analyzed. Finally, the sensibility matrix concept is introduced. The sensibility matrix allows us to calculate the minimum expected variability, for a given compound, due to the weight tolerances of its components.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3