Stress effect on 3D culturing of MC3T3-E1 cells on microporous bovine bone slices

Author:

Wang Junling1,Zhang Yongbo23,Yang Xiao4,Ma Xiaobing1

Affiliation:

1. School of Reliability and System Engineering, Beihang University , Beijing , 100191 , China

2. Research Center of Small Sample Technology, School of Aeronautic Science and Engineering, Beihang University , Beijing , 100191 , China

3. Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University , Ningbo , 315100 , China

4. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University , Beijing , 100191 , China

Abstract

Abstract The choosing of micromechanical environment is very important for the growth of bone-related cells. In this paper, bovine cancellous bone slices with 3D porous structures were used for 3D culturing of MC3T3-E1 cells (Mouse embryo osteoblast precursor cells) through a four-point-bending device due to their good biocompatibility and strength. Effects of micromechanical environment on the growth of MC3TC-E1 cells were investigated by immunofluorescent staining and alkaline phosphatase analysis, and the most positive microporous structures were found. In addition, a model of cell density vs stress was established through a specific normalization method and finite element simulation. The results showed that the micromechanical environment of the bone slices promoted cell proliferation, and the detail influence of stress on cell proliferation could be described by the mathematical model, which could provide a theoretical basis for the design of micromechanical environment in the bone tissue engineering scaffolds to stimulate cell proliferation.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3