Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate

Author:

Boraei Seyyed Behnam Abdollahi1,Nourmohammadi Jhamak2,Mahdavi Fatemeh Sadat3,Zare Yasser1,Rhee Kyong Yop4,Montero Ana Ferrández5,Herencia Antonio Javier Sánchez5,Ferrari Begoña5

Affiliation:

1. Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran

2. Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran , Tehran , Iran

3. Department of Biotechnology, University of Tehran , Tehran , Iran

4. Department of Mechanical Engineering (BK21 Four), College of Engineering, Kyung Hee University , Yongin , Republic of Korea

5. Institute of Ceramic and Glass, CSIC , C/Kelsen 5, 28010 , Madrid , Spain

Abstract

Abstract In this study, three-dimensional (3D) printing of 3D scaffolds containing halloysite nanotubes (HNTs) and strontium ranelate (SrR) as a carrier for the promotion of bone regeneration is investigated. SrR acts as an anabolic bone-forming and anti-catabolic agent, while HNTs act as a carrier of SrR. Poly(lactic acid) (PLA) is used as a biodegradable matrix and carrier for HNTs and SrR. The effects of the SrR addition on the morphological, biological, and in vitro release properties of the scaffolds are evaluated. The morphological results show a homogeneous structure with a proper pore size (approximately 400 µm) suitable for osteogenesis. The contact angle is decreased after the addition of SrR to the scaffold to 67.99°, suitable for cell attachment. X-ray diffraction shows that the SrR is homogenously and molecularly distributed in the PLA matrix and reduces the crystallinity in the prepared scaffolds. The in vitro release results demonstrate that the release profile of the SrR is stable, relatively linear, and continuous within 21 days (504 h). A cumulative release of SrR of approximately 49% is obtained after a controlled release for 504 h (21 days) and a low primary burst release (12%). Human adipose stem cells cultured on the 3D-printed scaffolds demonstrate that the SrR can efficiently promote biocompatibility, alkaline phosphatase activity, and alizarin red staining.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3