A review of atomic layer deposition modelling and simulation methodologies: Density functional theory and molecular dynamics

Author:

Sibanda David1,Oyinbo Sunday Temitope1,Jen Tien-Chien1

Affiliation:

1. Department of Mechanical Engineering Science, University of Johannesburg , Johannesburg , South Africa

Abstract

AbstractThe use of computational modelling and simulation methodologies has grown in recent years as researchers try to understand the atomic layer deposition (ALD) process and create new microstructures and nanostructures. This review article explains and simplifies two simulation methodologies, molecular dynamics and the density functional theory (DFT), in solving atomic layer deposition problems computationally. We believe that these simulation methodologies are powerful tools that can be utilised in atomic layer deposition. DFT is used to solve problems in surface science and catalysis (predicting surface energy, adsorption energy, charge transfer,etc.), semiconductors (band structure, defect bands, band gap,etc.), superconductors (electron–phonon coupling, critical transition temperature), and molecular electronics (conductance, current–voltage characteristics). Molecular dynamics (MD) is used to predict the kinetic and thermodynamic properties of a material. Of interest in this article is a review where different material problems emanating from atomic layer deposition from these fields have been addressed by DFT and MD. Selected publications are discussed where DFT and MD have been successfully applied in atomic layer deposition (and related processes in some instances). The applications of DFT stretch from binding energy calculations of molecules and the solid band structure in chemistry and physics, respectively, computing the electron density up to determining the properties of a many-electron system. Also highlighted in this review study are the challenges that DFT and MD simulations must overcome.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3