Affiliation:
1. School of Materials Science and Engineering, Tongji University, Shanghai201804, China
Abstract
AbstractThe present work focuses on fabricating a flexible and thermally conductive PI composite film. The PI composite film was obtained by blending hexagonal boron nitride (h-BN) combined with ethyl cellulose and 2,2’-Bis(trifluoromethyl) benzidine (TFMB) functionalized GO (TFMB- GO) in polyimide (PI). The ethyl cellulose successfully formed the thermal conduction network by promoting the dispersion of h-BN in PI matrix. Thus, the thermal conductivity of the PI composite film with ethyl cellulose could be twice than PI film without ethyl cellulose. Besides, the PI composite film containing 30 wt% of h-BN could still exhibit excellent flexibility. Moreover, the combination of TFMB-GO could increase the tensile strength of the PI composite film by up to 80%. Overall, we provided a novel idea for the preparation of flexible substrate materials with efficient heat dissipation which was convenient and possible to apply widely in the industrial production.
Subject
Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献