Deep learning application for stellar parameters determination: I-constraining the hyperparameters

Author:

Gebran Marwan1,Connick Kathleen1,Farhat Hikmat2,Paletou Frédéric3,Bentley Ian1

Affiliation:

1. Department of Chemistry and Physics, Saint Mary’s College , Notre Dame , IN 46556 , United States of America

2. Department of Computer Science, Notre Dame University-Louaize , PO Box 72 , Zouk Mikaël , Lebanon

3. Université de Toulouse, Observatoire Midi–Pyrénés, Irap, Cnrs, Cnes , 14 av. E. Belin , F–31400 Toulouse , France

Abstract

Abstract Machine learning is an efficient method for analysing and interpreting the increasing amount of astronomical data that are available. In this study, we show a pedagogical approach that should benefit anyone willing to experiment with deep learning techniques in the context of stellar parameter determination. Using the convolutional neural network architecture, we give a step-by-step overview of how to select the optimal parameters for deriving the most accurate values for the stellar parameters of stars: T eff {T}_{{\rm{eff}}} , log g \log g , [M/H], and v e sin i {v}_{e}\sin i . Synthetic spectra with random noise were used to constrain this method and to mimic the observations. We found that each stellar parameter requires a different combination of network hyperparameters and the maximum accuracy reached depends on this combination as well as the signal-to-noise ratio of the observations, and the architecture of the network. We also show that this technique can be applied to other spectral-types in different wavelength ranges after the technique has been optimized.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference66 articles.

1. Almeida I, Duarte R, Nemmen R. 2021. Deep learning model for multiwavelength emission from low-luminosity active galactic nuclei. arXiv e-prints. page arXiv: 2102.05809.

2. Anthony M, Bartlett PL. 1999. Neural Network Learning: Theoretical Foundations. Cambridge: Cambridge University Press.

3. Aydi E, Gebran M, Monier R, Royer F, Lobel A, Blomme R. 2014. Automated procedure to derive fundamental parameters of B and A stars: Application to the young cluster NGC 3293. In: Ballet J, Martins F, Bournaud F, Monier R, Reylé C, editors, SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, p. 451–455.

4. Bai Y, Liu J, Bai Z, Wang S, Fan D. 2019. Machine-learning regression of stellar effective temperatures in the second gaia data release. AJ, 158(2):93.

5. Bailer-Jones CAL. 1997. Neural network classification of stellar spectra. PASP. 109:932.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3