Deep learning applications for stellar parameter determination: II-application to the observed spectra of AFGK stars

Author:

Gebran Marwan1,Paletou Frederic2,Bentley Ian1,Brienza Rose1,Connick Kathleen1

Affiliation:

1. Department of Chemistry and Physics, Saint Mary’s College , Notre Dame , IN 46556 , USA

2. Irap, Universite de Toulouse, Observatoire Midi–Pyrénées, CNRS, CNES, 14 av. E. Belin , F–31400 Toulouse , France

Abstract

Abstract In this follow-up article, we investigate the use of convolutional neural network for deriving stellar parameters from observed spectra. Using hyperparameters determined previously, we have constructed a Neural Network architecture suitable for the derivation of T eff {T}_{{\rm{eff}}} , log g \log g , [ M / H ] \left[M\hspace{0.1em}\text{/}\hspace{0.1em}H] , and v e sin i {v}_{e}\sin i . The network was constrained by applying it to databases of AFGK synthetic spectra at different resolutions. Then, parameters of A stars from Polarbase, SOPHIE, and ELODIE databases are derived, as well as those of FGK stars from the spectroscopic survey of stars in the solar neighbourhood. The network model’s average accuracy on the stellar parameters is found to be as low as 80 K for T eff {T}_{{\rm{eff}}} , 0.06 dex for log g \log g , 0.08 dex for [ M / H ] \left[M\hspace{0.1em}\text{/}\hspace{0.1em}H] , and 3 km/s for v e sin i {v}_{e}\sin i for AFGK stars.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference44 articles.

1. Adelman SJ, Pintado OI, Nieva MF, Rayle KE, Sanders SE. 2002. On the effective temperatures and surface gravities of superficially normal main sequence band B and A stars. A&A. 392:1031–1037.

2. Allende Prieto C, Barklem PS, Lambert DL, Cunha K. 2004. S4N: A spectroscopic survey of stars in the solar neighborhood. The Nearest 15 pc. A&A. 420:183–205.

3. Aydi E, Gebran M, Monier R, Royer F, Lobel A, Blomme R. 2014. Automated procedure to derive fundamental parameters of B and A stars: Application to the young cluster NGC 3293. In: Ballet J, Martins F, Bournaud F, Monier R, Reylé, C, editors, SF2A-2014: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics; 2014 Jun 3–6; Paris, France. Paris: SF2A. p. 451–455.

4. Baranne A, Queloz D, Mayor M, Adrianzyk G, Knispel G, Kohler D, et al. 1996. Elodie: A spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119(2):373–390.

5. Baron D. 2019. Machine Learning in Astronomy: a practical overview. arXiv e-prints, arXiv:1904.07248.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3