Characterization of high-velocity stars in the S-PLUS internal fourth data release

Author:

Quispe-Huaynasi F1ORCID,Roig F1ORCID,Placco V M2ORCID,Beraldo e Silva L3ORCID,Daflon S1,Pereira C B1,Kanaan A4,Mendes de Oliveira C5,Ribeiro T6,Schoenell W7

Affiliation:

1. Observatório Nacional , MCTI, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400 , Brazil

2. NSF’s NOIRLab , 950 N. Cherry Ave., Tucson, AZ 85719 , USA

3. Department of Astronomy, University of Michigan , 2074 East Hall, 530 Church St, Ann Arbor, MI 48109 , USA

4. Departamento de Física, Universidade Federal de Santa Catarina , Florianópolis, SC 88040-900 , Brazil

5. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo , Rua do Matão 1225, São Paulo, SP 05508-900 , Brazil

6. Rubin Observatory Project Office , 950 N. Cherry Ave., Tucson, AZ 85719 , USA

7. GMTO Corporation , 465 N. Halstead Street, Suite 250, Pasadena, CA 91107 , USA

Abstract

ABSTRACT In general, the atypical high velocity of some stars in the Galaxy can only be explained by invoking acceleration mechanisms related to extreme astrophysical events in the Milky Way. Using astrometric data from Gaia and the photometric information in 12 filters of the S-PLUS, we performed a kinematic, dynamical, and chemical analysis of 64 stars with Galactocentric velocities higher than 400 $\mathrm{km\, s}^{-1}$. All the stars are gravitationally bound to the Galaxy and exhibit halo kinematics. Some of the stars could be remnants of structures such as the Sequoia and the Gaia-Sausage/Enceladus. Supported by orbital and chemical analysis, we identified Gaia DR3 5401875170994688896 as a star likely to be originated at the centre of the Galaxy. Application of a machine learning technique to the S-PLUS photometric data allows us to obtain very good estimates of magnesium abundances for this sample of high-velocity stars.

Funder

CAPES

CNPq

NSF

NASA

National Science Foundation

FAPESP

FAPERJ

FINEP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3