DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences
Author:
Kunig Verena1, Potowski Marco1, Gohla Anne1, Brunschweiger Andreas1ORCID
Affiliation:
1. Department of Chemistry and Chemical Biology , TU Dortmund University , Otto-Hahn-Str. 6 , D-44227 Dortmund , Germany
Abstract
Abstract
DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
Publisher
Walter de Gruyter GmbH
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Reference114 articles.
1. Ahn, S., Kahsai, A.W., Pani, B., Wang, Q.T., Zhao, S., Wall, A.L., Strachan, R.T., Staus, D.P., Wingler, L.M., Sun, L.D., et al. (2017). Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library. Proc. Natl. Acad. Sci. USA 114, 1708–1713. 2. Alioto, T.S., Buchhalter, I., Derdak, S., Hutter, B., Eldridge, M.D., Hovig, E., Heisler, L.E., Beck, T.A., Simpson, J.T., Tonon, L., et al. (2015). A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat. Commun. 6, 10001. 3. Arico-Muendel, C. (2016). From haystack to needle: finding value with DNA encoded library technology at GSK. Med. Chem. Commun. 7, 1898–1909. 4. Arkin, M.R. and Whitty, A. (2009). The road less traveled modulating signal transduction enzymes by inhibiting their protein-protein interactions. Curr. Opin. Chem. Biol. 13, 284–290. 5. Arrowsmith, C.H., Audia, J.E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P.E., Brown, P.J., Bunnage, M.E., et al. (2015). The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|