Author:
Ali Haider,Yilbas Bekir S.
Abstract
Abstract.Phonon transport in a two-dimensional thin silicon film is considered and the effect of heat source size and the film thickness on the transport characteristics is examined. Frequency dependent Boltzmann equation is incorporated in the analysis to account for the contribution of the ballistic phonons to the energy transport. Equivalent equilibrium temperature is introduced to assess the thermal resistance during the phonon transport in the film. The numerical scheme with the appropriate boundary conditions is used to predict the transport properties, including the effective thermal conductivity, of the thin film. It is found that the heat source size and the film thickness influence the thermal resistance of the film almost equally. The ballistic phonons reduce the film thermal resistance while suppressing the effective thermal conductivity in the thin film.
Funder
Deanship of Scientific Research (DSR)
Subject
General Physics and Astronomy,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献