Thermal Stress Development in Low Dimensional Silicon Film: An Analytical Approach

Author:

Yilbas Bekir Sami12,Alassar R. S. M.3,Al-Dweik Ahmad Y.4

Affiliation:

1. Mechanical Engineering Department , King Fahd University of Petroleum and Minerals , Dhahran , , Saudi Arabia

2. Senior Researcher at K.A.CARE Energy Research & Innovation Center at Dhahran Techno Valley , , Saudi Arabia

3. Mathematics and Statistics Department , King Fahd University of Petroleum and Minerals , Dhahran , , Saudi Arabia

4. Department of Mathematics, Statistics and Physics , 61780 Qatar University , Doha , Qatar

Abstract

Abstract Thermal excitation of the low dimensional silicon film is introduced and an analytical approach is adopted for the solution of the transport equation. In the analysis, the phonon radiative transport equation is converted into an integral form of the Fredholm equation of the second kind. The analytical approach is extended to include the formulation of thermal stresses for the following cases: (i) stress-free at the edges and (ii) one edge is constrained to have maximum stress while the other edge is set to be stress-free. The analytical and numerical results are evaluated for comparisons. The findings demonstrate that both results are in good agreement. The dimensionless temperature rise at the film mid-thickness becomes sharp for small thickness film. The peak value of thermal stress at the film mid-thickness becomes larger as the film thickness is reduced further. Stress waves generated initially are compressive at the film mid-thickness and they become tensile at both ends of the stress-free film, which becomes more apparent as time increases. Two consecutive compressive and tensile stresses are generated at the mid-thickness of the film as the stress boundary condition is changed to the maximum stress at one edge of the film.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3