Microscale Heat Conduction in Dielectric Thin Films

Author:

Majumdar A.1

Affiliation:

1. Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106

Abstract

Heat conduction in dielectric thin films is a critical issue in the design of electronic devices and packages. Depending on the material properties, there exists a range of film thickness where the Fourier law, used for macroscale heat conduction, cannot be applied. This paper shows that in this microscale regime, heat transport by lattice vibrations or phonons can be analyzed as a radiative transfer problem. Based on Boltzmann transport theory, an equation of phonon radiative transfer (EPRT) is developed. In the acoustically thick limit, ξL ≫ 1, or the macroscale regime, where the film thickness is much larger than the phonon-scattering mean free path, the EPRT reduces to the Fourier law. In the acoustically thin limit, ξL ≪ 1, the EPRT yields the blackbody radiation law q = σ (T14 − T24) at temperatures below the Debye temperature, where q is the heat flux and T1 and T2 are temperatures at the film boundaries. For transient heat conduction, the EPRT suggests that a heat pulse is transported as a wave, which becomes attenuated in the film due to phonon scattering. It is also shown that the hyperbolic heat equation can be derived from the EPRT only in the acoustically thick limit. The EPRT is then used to study heat transport in diamond thin films in wide range of acoustical thicknesses spanning the thin and the thick regimes. The heat flux follows the relation q = 4σT3ΔT/(3ξL/4 + 1) as derived in the modified diffusion approximation for photon radiative transfer. The thermal conductivity, as currently predicted by kinetic theory, causes the Fourier law to overpredict the heat flux by 33 percent when ξL ≪ 1, by 133 percent when ξL = 1, and by about 10 percent when ξL increases to 10. To use the Fourier law in both ballistic and diffusive transport regimes, a simple expression for an effective thermal conductivity is developed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3