Epitaxial regrowth of InP/InGaAs heterostructure on patterned, nonplanar substrates

Author:

Kosior Łukasz1,Radziewicz Damian1,Zborowska-Lindert Iwona1,Stafiniak Andrzej1,Badura Mikołaj1,Ściana Beata1

Affiliation:

1. Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland

Abstract

Abstract The main goal of the studies on epitaxial regrowth process of InP on patterned substrates is to gain knowledge about growth rates and interface quality on various areas to improve the fabrication technology for future applications. Prepared samples were measured at every step of the process by scanning electron microscope (SEM), optical microscope with dark field and phase contrast modes, atomic force microscope (AFM) and also using optical profilometer WLI (White Light Interferometer). Fabrication steps were divided into three main groups. First was the epitaxial growth of 5 µm thick InP layer. Next was patterning, which was made by applying a mask film on the epilayer. Shapes of the mesas after wet chemical etching with photoresist as a mask as well as the shapes of mesas slopes were irregular on the whole substrate area. These problems were solved by the use of silicon nitride mask. The mesas shapes and their slopes became then regular, independently of etching depth. Second fabrication step was etching of selected area. Couple of solutions were examined, but in details HCl:H3PO4 mixture in various proportions, which gave the best results in mesas shapes and orientations relative to the substrate. After that, the etching mask material was removed from the epilayer using a buffered hydrofluoric acid (BHF). The last step was epitaxial regrowth. To see how the epitaxial growth process was performed on different areas of patterned substrate it was suggested using a “sandwich”, which consisted of 50 layers of indium phosphide and indium gallium arsenide. This idea helped to understand the phenomena occurring during the epitaxial growth on that kind of substrate. The highest growth rate occurred on the top of the mesas and the lowest on their slopes. Described experiments are introduction to the studies on epitaxial growth of buried heterostructure (BH).

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3