Theory of strong coupling between molecules and surface plasmons on a grating

Author:

Rider Marie S.1ORCID,Arul Rakesh2,Baumberg Jeremy J.2,Barnes William L.1

Affiliation:

1. Department of Physics and Astronomy , University of Exeter , Stocker Road , Devon , EX4 4QL , UK

2. NanoPhotonics Centre, Department of Physics , University of Cambridge , Cambridge , CB3 0HE , UK

Abstract

Abstract The strong coupling of molecules with surface plasmons results in hybrid states which are part molecule, part surface-bound light. Since molecular resonances may acquire the spatial coherence of plasmons, which have mm-scale propagation lengths, strong-coupling with molecular resonances potentially enables long-range molecular energy transfer. Gratings are often used to couple incident light to surface plasmons, by scattering the otherwise non-radiative surface plasmon inside the light-line. We calculate the dispersion relation for surface plasmons strongly coupled to molecular resonances when grating scattering is involved. By treating the molecules as independent oscillators rather than the more typically considered single collective dipole, we find the full multi-band dispersion relation. This approach offers a natural way to include the dark states in the dispersion. We demonstrate that for a molecular resonance tuned near the crossing point of forward and backward grating-scattered plasmon modes, the interaction between plasmons and molecules gives a five-band dispersion relation, including a bright state not captured in calculations using a single collective dipole. We also show that the role of the grating in breaking the translational invariance of the system appears in the position-dependent coupling between the molecules and the surface plasmon. The presence of the grating is thus not only important for the experimental observation of molecule-surface-plasmon coupling, but also provides an additional design parameter that tunes the system.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3