Tensile Control of Vibrational Strong Light‐Matter Coupling with Flexible Polyester Films

Author:

Akinoglu Goekalp Engin1ORCID,Quan Dali1ORCID,Rokhsat Eliza1ORCID,Hutchison James Andell1ORCID

Affiliation:

1. ARC Centre of Excellence in Exciton Science School of Chemistry University of Melbourne Parkville VIC 3010 Australia

Abstract

AbstractPolaritons are generated by strong interaction between photons and matter, with the hybridization fundamentally changing the energy landscape of the system. Future exploitation of polaritons will benefit from implementing low‐cost, flexible, and easily tuneable configurations, as electronics have before. Here, coherent coupling of the carbonyl stretch vibrations of polyester (poly(ethylene terephthalate), PET) films to the optical modes of a Fabry–Perot (FP) cavity is presented, in which the FP cavity is directly formed on flexible, free‐standing, and commercially available PET films. For 2‐µm thick PET films, the carbonyl stretch vibration of the PET overlaps with the half‐wavelength FP cavity mode, leading to the coupling of the two modes, a Rabi splitting above 160 cm−1, and associated anticrossing in angular dispersion measurements. The study demonstrates dynamic control of light‐matter interaction strength by modulating film thickness under tension, finding that a 25% tensile stretch can tune the light‐matter interaction from 20:80 mixing to near‐perfect 50:50 hybridization at normal incidence. These findings are discussed in the context of future foldable/twistable/wearable polaritonic devices.

Funder

Australian Research Council

Centre of Excellence in Exciton Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3