Subradiant plasmonic cavities make bright polariton states dark

Author:

Yim Ju Eun1ORCID,Brawley Zachary T.2ORCID,Sheldon Matthew T.3ORCID

Affiliation:

1. Department of Chemistry , Texas A&M University , College Station , USA

2. Department of Materials Science and Engineering , Texas A&M University , College Station , USA

3. Department of Chemistry , 12377 University of California, Irvine , Irvine , CA , USA

Abstract

Abstract Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light–matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant “dark” cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC). That is, the mode is subradiant or evanescent at normal incidence and acquires increasing “bright” dipole character with larger in-plane wavevectors. We deposited polymethyl methacrylate (PMMA) thin films on QPL substrates to induce VSC with the carbonyl stretch in PMMA and measured the resulting infrared (IR) spectra. Our computational analysis predicts the presence of “dark” subradiant polariton states within the near-field of the QPL mode, and “bright” collective molecular states. This finding is consistent with classical and quantum mechanical descriptions of VSC that predict hybrid polariton states with cavity-like modal character and N−1 collective molecular states with minimal cavity character. However, the behaviour is opposite of what is standardly observed in VSC experiments that use “bright” cavities, which results in “bright” polariton states that can be spectrally resolved as well as N−1 collective molecular states that are spectrally absent. Our experiments confirm a reduction of molecular absorption and other spectral signatures of VSC with the QPL mode. In comparison, our experiments promoting VSC with dipolar plasmonic resonances (DPLs) reproduce the conventional behavior. Our results highlight the significance of cavity mode symmetry in modifying the properties of the resultant states from VSC, while offering prospects for direct experimental probing of the N−1 molecule-like states that are usually spectrally “dark”.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3