Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision

Author:

Giamougiannis George1ORCID,Tsakyridis Apostolos1,Moralis-Pegios Miltiadis1,Pappas Christos1,Kirtas Manos1,Passalis Nikolaos1,Lazovsky David2,Tefas Anastasios1,Pleros Nikos1

Affiliation:

1. Department of Informatics, Center for Interdisciplinary Research & Innovation , Aristotle University of Thessaloniki , Thessaloniki , Greece

2. Celestial AI , 100 Mathilda Place, Suite 170 , Campbell , CA 95008 , USA

Abstract

Abstract Analog photonic computing comprises a promising candidate for accelerating the linear operations of deep neural networks (DNNs), since it provides ultrahigh bandwidth, low footprint and low power consumption computing capabilities. However, the confined photonic hardware size, along with the limited bit precision of high-speed electro-optical components, impose stringent requirements towards surpassing the performance levels of current digital processors. Herein, we propose and experimentally demonstrate a speed-optimized dynamic precision neural network (NN) inference via tiled matrix multiplication (TMM) on a low-radix silicon photonic processor. We introduce a theoretical model that relates the noise figure of a photonic neuron with the bit precision requirements per neural layer. The inference evaluation of an NN trained for the classification of the IRIS dataset is, then, experimentally performed over a silicon coherent photonic neuron that can support optical TMM up to 50 GHz, allowing, simultaneously, for dynamic-precision calculations. Targeting on a high-accuracy and speed-optimized classification performance, we experimentally applied the model-extracted mixed-precision NN inference scheme via the respective alteration of the operational compute rates per neural layer. This dynamic-precision NN inference revealed a 55% decrease in the execution time of the linear operations compared to a fixed-precision scheme, without degrading its accuracy.

Funder

Hellenic Foundation for Research and Innovation

European Commission

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3